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1. Introduction

The first order quasilinear system

Ws wt - vx =o(.Y > 0)
vt - ON x + yvV = 0

arises in a variety of ways in several areas of applied mathematics; thi

problem of establishing global existence and nonexistence theorems for

initial-boundary value problems associated with such systems has been

the subject of much investigation during the past fifteen years.

If (in a simple connected domain) in (x,t) space we set v = yt

w = Yx then (S) is transformed into the dissipative (if y > 0) quasi-

linear wave equation

(.1) + t =x(Yx)Yxx

Wlth y = 0 , this equation was studied by Zabusky [1] under the assumption

that ?2(c) = (1 + eC) and that the initial and boundary data are of the form

(1.2) f y(O,t) =y(Lt) t > 0

~y(xO) Yo(7)W, Yt(X,O) = 0 , 0< x < L

The initial-boundary value problem (1.1), (1.2) (with V= 0) serves to model

the transverse vibrations of a finite nonlinear string. By employing the

method of Riemann invariants Zabusky proved that a smooth solution of (1.1),

(1.2) must break down in finite time as a result of some second derivative

of y(x,t) becoming infinite; this, in turn implies the development of

.4 shocks in the solution (v,w) of the quasilinear system (S) Using a

different argument (but one also based on Riemann invariants) Lax [2] in
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1964 extended Zabusky's finite-time breakdown results for (1.1), (1.2) to

the case of a general positive function X(C) satisfying I a' ( X)I > > 0 ;

the assumption of positive X is equivalent to assuming that the system

(S) , with Y > 0 , is strictly hyperbolic, i.e. that a'(C) > 0

VCe R In [31 MacCamy and Mizel again studied (1.1), with Y = 0

subject to initial and boundary data of the form

(1.3) y(ot) = 0 , y(L,t) =0 , t > 0
y(x,o) = 0 yt(xo) Fl(x) , 0 < x < L

and extended the breakdown results of Zabusky and Lax to general functions

X(C) satisfying X(C) > 0e R1  , X(O) = 1 , and A'(c)< 0 for

> 0 ; they also proved that if either of the integrals

Jo X(c}d: or 0"X() }dC

is finite, then there exist intervals on the x-axis in which the solution

must exist for all time even though it must breakdown for some x-values

outside these intervals. The latter results of MacCamy and Mizel can be

extended to more general initial conditions of the type

y(x,) = o(x) , yt(x'o) = 1 (x), 0< x < L

with YO(X) + yl1 (x) A 0 but no pair of initial data of the form (7o(X),O)

can be found which allows for global existence in time of a smooth solution

in some x interval. In a later series of papers [4], (51 MacCamy,

Mizel, and Greenberg considered the damped nonlinear wave equation

_(1.3) (Y(t) + P(Yx)Yxt)

SII



and proved that initial-boundary value problems associated with (1.3) always

have smooth global solutions which are, in fact, asymptotically stable, no

matter how large the initial data 3o(x) , 1 (x) are.0?

Much of the more interesting work concerning the damped versions (y > 0)

of (1.1), and the related system (S) , is of a more recent vintage; there

has also been a concerted effort on the part of various researchers to resolve

the problem of global existence ;1. nonexistence of smooth solutions to non-

linear one-dimensional integrodifferential equations which arise in several

theories of nonlinear viscoelastic response and which involve damping mech-

anisms that are sometimes formally equivalent to that present in the system

(S) but which are often more subtle.

In a significant piece of work Nishida [6] has recently considered the

initial-value problem for the damped quasilinear system of equations (S)

and has proven, using a Riemann invariant argument, that unlike the situation

in the undamped case (Y = 0) , global smooth solutions do exist if the

initial data are small in an appropriate sense; to be precise, Nishida con-

siders o(C) such that 's) > 0 for JCI < 5 , with o(.) e c(ICI <b)

defines the Riemann invariants r , s via

r (w) -v , s (w) -v

where

0(w) = o"w '()d C

and assumes, in his proof of global existence, that r(x,O) , s(x,O) , as

determined by the initial data v(x,O) , w(x,O) associated with (S)

J



satisfy

r(x,O) , s(x,O) e CI(R1 ) with

(1.4) suplr(x,O)I + supls(x,O)J < min C20(5) , - 20 (-5)1

(1.5) su~ldr(x,O) < + sup I ds(x,O) < +dx dx

and, for 6 > 0 sufficiently small,

(1.6) (suplr(x,O)l + supls(x,o)I)

(S upl (X'°) + sup I (XA)I) <

Thus, under Nishida's hypotheses the system (S) is strictly hyperbolic

in 0 = i(v,w)lv e R1 .IwI < 8) ; this corresponds to the assumption that

the damped quasilinear wave equation (1.1) is hyperbolic in a neighborhood

of Yx = 0 . Nishida also obtains global existence and decay to zero, in

the L norm, as t - +m , of a unique smooth solution of (1.1) by adopting

Matsumura's modification [7] of an L2-energy method that is due to Courant,

Friedrichs, and Lewy [8] and depends upon the derivation of an appropriate

set of a priori energy estimates. In [6] Nishida conjectured that sing-

ularities in the first spatial derivatives of the solutions (v,w) of the

system (S) should develop, in general, in finite time, if one relaxes the

assumption that the gradients of the initial data (v,(x,o) , w(x,O)) be

small; this conjecture of finite-time breakdown of smooth, i.e., Cl solutions

(v,w) of the initial value problem associated with the damped quasilinear

system (S) , when the gradients of the initial data are no longer sufficiently

small, has been proven valid by Slemrod [9], [101, in connection with his

5a
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recent work on the instability of steady shearing flows in nonlinear via-

coelastic fluids. Before proceeding, however, with a discussion of the

viscoelastic model considered by Slemrod in [9] and [10], and its relation

to both the quasilinear system (S) and the quasilinear evolution equation

(E) wtt(x,t) = a(w(x,t))= - Y w t(x,t) , 0 < x < L , t > 0

which is the subject matter of the present paper, we digress briefly to

delineate some recent results of MacCamy [11], Dafermos and Nohel [12], and

this author [13] on a voscoelastic model which is closely related to the

nonlinear model considered in [9], [10]; we also comment below on some re-

lated work of Nohel [14] on the damped nonhomogeneous quasilinear wave equation

associated with (1.1).

The most widely studied mcdel of one-dimensional nonlinear viscoelastic

response seems to be the one which was first studied rigorously by MacCamy

in [11]; in this model the displacement field u(x,t) satisfies, on tO,L)xEO,"]

a one-dimensional nonlinear integrodifferential equation of the form

(I) utt = a(O) a(ux)x - It a7(t-r)a(ux)x dT + '(x,t)

and initial and boundary data of the type

(1.7) u(O,t) = 0 , u(L,t) = 0 , t > 0

u(x,o) = ZoW(X) , Ut(x,o) -- (x) , 0 <x < L

By employing Riemann invariants and a set of suitably derived a priori

energy estimates, MacCamy showed that the above initial-boundary value

problem has a unique classical solution for all t > 0 when the data term

3 is suitably restricted and the inital data Z, u are sufficiently
00

LI!
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small; it is also proven in [11] that the solution is asymptotically stable,

i.e. that it tends to zero as t - + m The essential hypotheses in [11]

are that a(t) =a + A(t) , a. > 0 ,Ae L1 (0,-) , (-l)ka(k)(t) > 0 , k0 ,

1, 2, c(O) = 0, o'(C) > e > 0 , and a(k)()I < , k - 0, 1, 2 for all

e RI  as well as various smoothness assumptions relative to a , 'U '

and 5 ; the restrictions on 1 take the form of boundedness and growth

conditions. Without loss of generality it may be assumed that a(0) = 1 in

(I) . It can be shown that (I) has the equivalent form (see [10], [ll],

or [12)

(1.8) utt(x,t) + A Jto k(t-T)ut(x,T)dT = a(U (x,t)) + §(x,t)

for x e [0,L] , 0 < t < , where k(t) is the resolvent kernel

associated with i(t) and I(x,t) is determined by k(t) and 3(x,t)

Clearly (1.8) is also equivalent to

(1.8a) utt(x,t) + y ut(x,t) = o(ux(x,t))x +

where the functional 0(u) is given by

(l.8b) % (u(x,t)) = O(x,t) - It kt(t - T)ut(x,T) d

and y = k(O) ; this damped quasilinear wave equation corresponds to the

nonhomogeneous version of (1.1) but has the obvious drawback that the non-

homogeneous (or forcing) term I depends on the displacement u , a problem

which is handled in [11] v% the establishment of certain a priori estimates

for the solution.

J. A. Nohel [14] recently considered the initial-value problem on R

for damped non-homogeneous wave equations of the form (l.8a) , with

.I
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=(x,t) irnependent of u(x,t) , and extended Nishida's method for the

corresponding homogeneous equation (1.1) so as to obtain global existence

and uniqueness of smooth solutions whenever the initial data are sufficiently

small (in the sense of Nishida [6], delineated above) and the Ll(o,-) and

L (O, ) norms of Z(t) = sup 4 (x,t)I and the Lw(O,-) norm of
x e R

1
1 (t) = sup It (x,t)l are sufficiently small as well. In addition, Nohel

xeRI x
[14) is able to prove that the unique global smooth solution of the initial-

value problem associated with (l.8a) depends continuously on the data T
0

u1  , and f . In more recent work, Dafermos and Nohel [121 have applied

an appropriate modification of Matsumura's energy P-guments [7] to the stand-

ard initial-boundary value problems associated with the one-dimensional non-

linear integrodifferential equation (I) and deduced the existence of a unique

globally defined smooth solution which, under appropriate conditions (again,

suitably "small" data U , U ') decays to zero as t -+" ; it is to

be noted that unlike the arguments in [61, [9] - [10], [11] , which are

based on Riemann invariants, and hence are strictly limited to one-dimensional

problems, the method of Dafermos and Nohel [12] may be extended to problems

in two or three (or even higher) dimensions. It should also be noted that

both MacCamy [15], using Riemann invariants in conjunction with energy

estimates, and Dafermos and Nohel [12] , using energy estimates, have treated

the parabolic counterpart of (I) which arises in problems of heat flow in

nonlinear one-dimensional heat conductors with memory; Dafermos and Nohel [12]

"4 also treat a problem of heat flow in a two-dimensional nonlinear heat conductor

with memory thus indicating how Matsumura's arguments extend to problems in

I



TW

I

higher dimensions.

In his 1975 paper, MacCamy conjectured that the viscous damping mech-

anism inherent in (I) was too weak to prevent breakdown of global smooth

solutions if the data were sufficiently large in an appropriate sense; to

the best of this author's knowledge, that conjecture remains open although

Slemrod (9], [10] has proven a finite-time breakdown result for a closely

related model of nonlinear one dimensional viscoelastic response, a model

which leads to a damped ( y > 0) homogeneous system of the form (S) as

opposed to a damped nonhomogeneous system of the type (1.8a) , (1.8b) (which

is, in turn, equivalent to (I) ) . This author has recently derived [16]

growth estimates for solutions of the initial boundary value problem corres-

ponding to (I) without making any assumptions about the size of the data;

these results are of the tollowing type: Suppose that a(0) = 1 , 3 = O ,

that a(C) = r'(C) with aZ'(C)> CV'(C) , VC e RI , and some a > 2 and

that a > 0 such that I <'() < V C e RI  (no sign definiteness

assumptions are imposed on the a(klt) , k = 0 , 1 , 2 as in [U)l and 121);

let T > 0 be fixed. Then any sufficiently smooth solution of the initial

boundary value problem corresponding to (I) which lies in the class

(1.9) C= (u : [0,T) -.H [O,L]I sup [O uJI 1 <C
0 [0,T) H0o

for some real number C > 0 must satisfy the quadratic growth estimate

(1.10) lU2 _IIol2 + 2v l v2 t+ t, 0 < t < T
L ! L01 L2

"4 where v > 0 is an appropriately chosen constant. To be more precise, the

growth estimate (1.10) holds for solutions u(x,t) e C2 ([O,L]x[O,T]) n C

%-



with initial data ( , ) satisfying

(1 -(lla) rlZ(% u~

where
vw = 2 a 5/ (a - 1)

5 = max (E(o) , c 2)
(1-11b) "IT

1 Lu x t2 + I
E(t) = . ut(xt)dx o ux (Ux(x,t))dx > 0

= li(o)IT + (1- ) sup IT I A(t-T) dT
[0,T)

pT t -21/2/TJ0 (1t a(t -)dT) dt+Jr o "~

In (1.11b), E(t) > 0 follows from the fact that our two hypotheses on C(C)

imply that E(C) > 0 , V e 1 ; the growth estimate (1.10) applies, of

course, to the unique global smooth solutions of the initial-boundary value

problem associated with (I) when the initial data Z, u are sufficiently

small in the sense of [11] or [12].

While global nonexistence of smooth solutions has not been proven for

the viscoelastic model represented by (I) , when the data Z U1 ' 3 are

appropriately large, it has been proven for a related model of nonlinear

viscoelastic response. In [91, [10] Sl'mrod considers steady shearing flows

in a nonlinear voscoelastic fluid in which the stress is given a4 a real-

valued, odd, analytic function a of the linear functional o " (xt-s)ds
0 X

where V (x,t) is the velocity field (actually the y-component of the velocity

field in a fixed Cartesian coordinate system (x,y,z)) and Vx(x,t) is the

.4 shear rate. Thus, the shearing stress T' Y(t) is given by

(1.12) Txy(t) = a(Joe'TrV(x,t-T)d)

0 ....
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and the equation for conservation of linear momentum then yields the evolu-

tion equation

(1.13) p rt(x,t) o(re'-Y ( ,t-s)ds)x

where p > 0 is an (assumed) constant mass density. Associated with (1.13)

in [9], [10] are the no-slip boundary conditions

(1.14) V(o,t) = 0 , T(L,t) = v

where it is assumed that the fluid is confined between two parallel walls of

infinite extent at x = 0 and x = L with the top wall at x = L moving

with velocity V . The system (1.13), (1.1h) admits the steady rectilinear

flow given by $x) = Vx/L as a solution and, thus, in order to study the

stability of the flow against shearing perturbations Slemrod sets

?Ix,t) = V(x,t) - VX/L in which case the perturbed flow I'x,t) satisfies

(l.15b) A

(1.15a) pf (x, t) = a(J' e- rx(x,t-s)ds +

AA
(1.l5b) 0(o,t) = 0 , /(L,t) = 0

to which is coupled the prescription of a smooth velocity history, i.e.,

(1.15c) x,T) = Vc(XT) < T < 0

Clearly, (l.15a) can be rewritten as

(1.15a') t ( x ,' t )  e -~ N's -xx t s ) d s ) x

t 0 X (~

with a( 0 ). = 0 if we set

(1.16) 6( +

P Y,.,
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Slemrod [9], [10J now is able to transform the initial-history boundary

value problem (l.15a'), (l.15b), (1.15c) into an initial-boundary value

problem for a damped quasilinear system of the form (S) by introducing

the new variables

(1.17a) v(x,t) = S' eS t(,t-s)ds

(1.17b) w(x,t) = r e'YS A(x,t-s)ds
0 XC

Integration by parts in (l.17a) yields

v(x,t) = Vx,t) - y .r e'Ys Sx,t-s)ds
It is then immediate that (v,w) satisfy

S- -YV (w) - Y v
vt  -t - _wX  Y

in other words (v ,w) satisfy (S) with a replaced by a In view of

(l.15b), (1.15c) and the definitions of v(x,t), w(x,t) we have associated

with (N) the initial and boundary conditions

(l.18a) v(O,t) = 0 , v(L,t) = 0

(l.18b) v(x,O) = o(x) , w(x,O) = (x)

where ' result from the insertion of the velocity history o(X,T)

in (l.17a), (1.17b). In order that the constitutive relation (1.12) be

1
nonlinear it is necessary that o"({*) # 0 for some C* R1  By choosing

the speed of the top wall V = yLC* it follows that, in addition to 8(0) 0 0

P )
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we also have 6"(0) 0 . But the crucial requirement imposed in (9], (10]

on the system (S) is that it be strictly hyperbolic at least in a neigh-

borhood of the origin, i.e., that 6'(C) > OC e R1 such that ICI < 5

for some 5 > 0 . In this case if one defines the Riemann invariants

r(x,t) = v(x,t) + 7(x't) /6'(C)dC(1-19)
s(xt) = v(x,t) - J(w(xt) . c( )dC

and assumes that Ir(x,O)l I s(x,O)I are sufficiently small it is possible

(Slemrod [91, Nishida [61) to prove that for as long as smooth solutions of

({) (1.18a,b) exist, Ir(x,t)I, (s(x,t)I remain small. Thus, if &'(0) >0

and Ir(x,0)I, js(x,O)I are chosen sufficiently small,it follows that for

as long as smooth solutions exist w(x,t) remains uniformly near zero and

hence 8'(w) > 0 . With the assumptions that jr(x,O)J, Is(x,O)I are

sufficiently small and either Irx(x,o)l or Isx(x,O)I is sufficiently

large Slemrod [9], [10) is then able to employ a Riemann invariant argument.

to prove that C1  (in (x,t) ) solutions (v,w) of (S) , (1.18a,b) exist,

for at most, a finite time - As Slemrod [9,§4] notes this finite time J
breakdown result depends crucially on the local hyperbolicity assumption

a' (0) > 0 . For example, in the case of a fluid of integral grade three

where

a(C) = al + a3C3

if, 0l > 0 , a3 < 0 then, clearly, a'(C) < 0 for II sufficiently

large; however, if lv(x,O)I, lw(x,O)l are sufficiently small then Iw(x,t)I

remains small for as long aa smooth solutions of (S) , (l.18a,b) exist and

' . . ;I
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one never has to worry about the case JiC "sufficiently large" as long as

(1.20) &'(0) = a,( )2 _ a, + 3a (L)2 > 0

i.e., as long as V/yL is small. If, on the other hand, V/YL >,/o 1/3la 3 I

then a'(O) < 0 , loss of hyperbolicity results, and, as the author ([9],

[10) notes no conclusions regarding either global existence or nonexistence

of solutions can be obtained from the analysis in (91, (10] (2)

Our aim in this paper will be to try to address the situation vis a vis

initial-boundary value problems associated with the damped (y > 0) quasi-

linear system (S) when a'(0) < 0 ; in general, it will be shown that,

for a variety of boundary conditions, one can not expect global smooth solu-

tions of (S) to exist when a' (0) < 0 even if the initial data functions,

(x),wo(x) , and their gradients, are small in magnitude. In addition,

we obtain for various initial-boundary value problems associated with (S)

growth estimates for solutions which are valid on the maximal time interval

of existence; many of these growth estimates apply to those well-posed

problems associated with (S) which are obtained by restricting, as in (6],

the initial data to be sufficiently small. Some of our global nonexistence

results may also be applied to the nonlinear viscoelastic fluid model con-

sidered in [9], [101 if we replace the no-slip boundary conditions (1.14) by

A

(2) We note, in passing, that x (w) x Vx + NW so that if (v,w)tX

is not of class C1  then the velocity field V(x,t) is not of class C1

(in (x,t))
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boundary conditions involving both the shear rates at x = 0 and

x = L , or the shear rate at x = L and its gradient at x= , and

work with the flow T(x,t) directly instead of with shearing perturbations

of a steady flow.

Our results also cover certain situations where a' (0) >0 but a' (C) < 0

for IJC sufficiently large. In the case of the fluid of grade three, for

example, i.e., a(C) = alC +(3C3 , aI > 0 , a3 < 0 , o'(C) < 0 if

IJC > a/3031 If the initial data o (x) , Wo(X) are sufficiently small

then, with c'(O) = a > 0 , it is guaranteed, by the results of Nishida

(61 and Slemrod [91, that lw(x,t)l remains small and, in fact, smaller than

al/31a31 , for as long as smooth solutions of (S) exist; in this case

a'(w(xt)) > 0 on the maximal time interval of existence. On the other

hand if Iv(x,O)l , lw(x,O)l are not sufficiently small then there is no

guarantee that lw(x,t)l remains smaller than the critical value 1/31031

in which case there may be values of (x,t) such that a'(w(x,t)) < 0

the global nonexistence result of [9], [10] do not seem to cover this

possibility either.

Our approach to the quasilinear system (S) shall be through the

equivalent damped quasilinear wave equation (E) . That (S) and (E)

are equivalent is easily established, i.e., if (v,w) is a solution of

(S) then by elimination between the first and second equations which comp-

rise (S) it follows that w (x,t) satisfies (E) . On the other hand,

if w (x,t) satisfies (E) we may multiply (E) through by eyt and obtain

the fact that w(x,t) satisfies

L T
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(e' wt(x,t))t =eyaw Xtxx

which (at least in a simply connected domain of (x,t) space) implies that

3q(x,t) such that

q.x,t) - Ytwt(x,t) , qt(x,t) = eYtt(w(xt))

If we set v(x,t) = e-Ytq(x,t) it then follows directly that v = wt and

vt = a(w)x - yv , i.e., that (v,w) satisfies (S) . Actually, given that

w(x,t) is a solution of (E) one may construct a function v(x,t) , such

that (v,w) is a solution of (S) by simply integrating the first equation

in (S) w.r.t. x to obtain

v(x,t) =rw(yt)dy + f(t)

and then substituting into the second equation in (S) and replacing the

resulting term wtt(yt) by a(w(y,t))yy - ywt(yt) ; in this manner, one

easily obtains v(x,t) as

(1.2) v(x,t) =Xw t(yt)dy + -fteY o( w(O ' ))wx(O,)dT

to within an arbitrary constant of integration. The pair (v,w) is then

a solution of (S) . If growth estimates for solutions of initial-boundary

value problems associated with (E) can be obtained then (1.21) can,in

principle, be used to derive growth estimates for the corresponding v(x,t)

which is such that the pair (v,w) is a solution of an equivalent initial-

boundary value problem associated with (S)

Through the remainder of the paper we shall assume that a(c) is of

class c2 (R1), and genuinely nonlinear so that 3C* e R1 for which a"(C*) A 0

@K



In addition, we shall confine our attention to nonlinearities o(C) that

satisfy a specific growth condition which is delineated in §2 ; this

restriction essentially limits the class of nonlinearities o(C) to those

which are such that the absolute value of the indefinite integral of G(C)

grows slower than a polynomial in CI of degree a , for an appropriate

a >0

Finally, by a regular solution w(x,t) of an initial-boundary value

problem associated with (E), with homogeneous boundary data w(O,t) = w(L,t) = 0

we shall understand, in the sequel, a solution w e C2 ((O,L)x(O,-)) such

that wx(O,t) = lim ( 6w(y't) < + c withxy -0o+ by

(1.22). V(0, ) L'[O,-) L O,)
x

The motivation for this definition of regular solution will be clear from

the analysis in §2 ; for initial-boundary value problems for (E) with

homogeneous boundary data wx(O,t) = 0 , w(L,t) = 0 , the definition of

regular solution will be modified to mean a solution w j C2((O,L) X [0,-))

such that for 0 < t <

(1.23) 0'(w(O,t)) = lim + a'(w(yt)) < +
y-O

.)

I1
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2. Some Basic Estimates

In this section we will derive an energy estimate as well as several

other estimates which are satisfied by a particular real-valued functional

3(w(x,t)) which is defined on regular soultions of initial-boundary value

problems associated with the quasilinear evolution equation (E) ; these

estimates will be used in §3 to prove nonexistence of regular solutions,

i.e., global nonexistence of sufficiently smooth solutions on [O,-) , as

well as to derive various growth estimates (lower bounds) which are valid

on the maximal interval of existence [O,tmax) , tmax < + , of a sufficiently

smooth solution w(x,t); without loss of generality we may take L = 1 in

all that follows. Thus, let w(x,t) be a regular solution of (E) with

associated inital and boundary data of the form

(2.1) w(x,o) = o(X) , wt(x,o) = W(X) , 0 < x < 1

(2.2) w(Ot) = 0 , w(lt) = 0 , t > 0

where w(.) , i(.) are assumed to be of class C2  on [0,1]

Concernink- the nonlinearity a( Q in (E) , we will assume, in addition

to the hypotheses delineated in §1 , that c(O) = 0 and that E(C) = a(p)do,

C e R satisfies

(2.3) a 1 (C)> C E'(C) , Ve R1 and some a > 0

In the sequel our global nonexistence theorems and growth estimates will

hold for a(C) such that E() satisfies (2.3) for a in an appropriately

chosen interval of (0,-) . For a(C) = olC + a 3 it is easily seen that1 3
(2.3) is equivalent to the statement that

D-
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(2.4) a(} C2, + Cy ( l)c > 0,g Rl

If a1 > 0 a a3 > 0 , (2.4) is satisfied for any a > 4 If a < 0 ,
a3 < 0 then (2.4) is satisfied for any a , 0 <a < 2 With 01 > 0 ,

a3 < 0 , (2.4) is satisfied with 2 < a < 4 while if a1 < 0 , a3 > 0 (2.4)

is not satisfied by any a for all C e R The example of

a(C) = oiC + a 3 will be used in several places later on in the paper.

The inequality is a restriction on the growth of E(C) in the sense that

it implies that VC e R, I E(C) < C I for some C > 0 , > 0 - The

additional restriction that ja'(C)j < -a , for some a > 0 , would imply

that r(C) > 0 , C e R1 ; this hypothesis was employed in [131 but will not

be used in this paper and, in fact, we want to allow for a(C) which are

such that 7(C) < 0 for IJC sufficiently large.

For a regular solution w(x,t) of (E) , (2.1) , (2.2) we define an

energy functional
1 1'fX2 p

(2.5a) E(t) 1 So (jx wt(Y't)dy) 2dx + orl (w(x,t))dx

and set

(2.5b) E(t) E(t) - ( 0 ) 1jo w2(0 )dT

We claim that 9(t) < E(o) = E(0) , for all t , 0 < t <

In order to demonstrate this we compute

(2_.6) E:t) X ~ (y, t) dy) (:xwtt (y, t)dy) dx

+ lE' (w(x,t) )wt(x,t)dx

54



= ~ j'w~yt~y(a~(w(y,t)) y Yvt (y,t))dy)dx

+ P'E' (w(X~t))wt(x,t)dx

-Y S',(Sxw,(yt)dy) 2 dx

+ rl EV(w(x,t))wt(xbt)dx

The result is also true on [O,tmax) for solutions which are of classeo

(IO,L] x [O,tmax)), satisfying (1.22a-c), where tO,tlmax) , t mx isI
the maximal interval of existence. Thus

0x S wt~y,ty~c~w~x,,))Jdx

+ j"V( w(x,t))wt(x,t)dx

a'((,t)w(o,t) f x w~ w(y~ t)dy)dx

-Y v (S (wt(y,t)dy) dx

dx

(2.7)~V JEot w [ct0wOtXt + yX2(t)]d

(t wx()+ (y)y) d ,x ) ~)

a n5.0'

(27IEt a(~ (,t ~)+-) t
01()w 0,
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I

o' (o)w(ot) 2= x(t) + ( 2y 1

( v'(O)w(O't))2

Y

Therefore, dropping the nonnegative term on the right-hand side of (2.7)

we have
12

(2.8) g(t) <

or, for 0 < t < co

(2.9) E(t) < E(O) + tw2(0,T)dT
4~y " x

Defining 9(t) = E(t) - tw2x(0,T)dT we see that 2(t) < E(O)

9(0) . We state our result as

Lemma 1: Let w(x,t) be a regular solution of (E) , (2.1), (2.2), and

define

E(t) = -o(Sx wt (y,t) dy) 2dx

+ rlpw(xt) c(p)dpdx- a2(0S w 2 (O,T)d'r

Then, r(t) < 2'(0) for all t ,0 < t < "

We now introduce the real-valued function 3(t) ,(w(.,t)) which is

defined, for 0 < t < , on regular solutions w(x,t) of (E) , (2.1),

(2.2) by

(2.10) 3(t) l(rx w(y,t)dy)2dx + (t + t ) 2

where Po > 0 , t o > 0 are arbitrary; we will obtain several lower bounds

on the derivative W'(t) that will be used in the sequel to derive various

second order differential inequalities which are satisfied by J(t) when

S

44 .

III.1 I- I I
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w(x,t) is a regular solution of (E), (2.1), (2.2). We begin by computing

directly

(2.11) W'(t) = 2 f1 (I'X w(y,t)dy)(J"xw (y~t)dy)dx + 2f:)(t + t)

and

(2.12) 3"(t) =2 r-l ( rX wt y t)dy) 2
. . jo

+ 2 J0L(rx w(Y,t)dy)(rxwtt(y t)dy)dx +21

=2 ri (I x w (y,t)dy) 2 dx -2y J'1 (JX w(y,t)dy) ('xo wt (y,t)dy)dx

+ 2 fl (JII w(y,t)dy)[ (a(w(y,t)) l')]dx + 2J3

=2 Pl(J' wt (y, t) dy) 2 x

%' 1 f' 0 (y,t)dy)a(w(x,t)) 
xdx

-2 ca(O)w (O,t) 1 (jx w(y,t)dy)dx

-Y (j'(t) - 20(t + t 0))) +2

where we have used (2.11). Thus,

(2.13) "(t) >-y'(t) + 2 f1 f' wt (y, t) dy) 2dx

+ 2 fl~ (J'x w(y,t)dy)c(w(x,t)) dx

-2 a'(O)w (O,t).r (Ixw(y,t)dy)dx +2f

On the other hand,

(2-14) H(t) -2y .1, (jSx w(y,t)dy)(!xwt(y,t)dy)dx

x2 (.l 2

>- V [3(t) - (t + t 0 ) Y SO y 0tytd)d

Using this, estimate in (2.122) we have

LII
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x 2

(2.15) 3"(t) >-y3(t) +(2-y)' (j'wt(Y,t)dy) 2 dx0 0

1x
+ 2 (2 w (y,t)dy)a(w(x,t))xdx

0 0
1 x

- 2aI'(0wx(0,t)' (' w(y,t)dy)dx + 2P
0 0

We will now simplify the lower bounds (2.13), (2.15) for 3"(t) by making

R1
use of our hypotheses regarding a(C),Ce , our definition of a regular

solution, and the estimate given by Lemma 1; we begin with (2.15), integrat-

ing the third term on the right-hand side of the estimate by parts so as to

obtain

(2.16) J"(t) > - -y ,(t) + (2- y) o (CX wt(yt)dy) 2 dx.jo .1o

-2 o'(o) wx(O,t) sl(fxw(yt)dy)dx

- 2 r'1 w(x,t)o(w(x,t))dx + 2P

where we have again used the fact that o(w(1,t)) = 0 , 0 < t < By

adding and subtracting the term 2ci l'E(w(x,t))dx in (2.16) we then obtain

(2.17) _"(t) > - v 5(t) + (2 -) 11 (JxW(y t)dy )2 dx

- 2Cx .1 E(w(x,t))dx

04

-2a' (0)w (o't) ,0 (J'0 w(y,t)dy)dx + 2f

+ 2 1I(ci E (w(x,t)) -w(x,t)E'(w(x,t))dx0

Now, as per our hypothesis relative to o(c) , a F(C) > CT'(C) , eR 1

for some a > 0 ; choosing a in (2.17) sufficiently large(3 ) (i.e., restricting

the growth of X(C) so that ):(C), < ClIC ,VCeRl) it follows that we may

drop the last integral on the right-hand side of (2.17). Also, by the first

lemma,

(3) Sufficiently large means we will later have to restrict a so that

a1 < a <a 2 where a, > 0 , a2 < . This further narrows the class of
admissible nonlinearities a(C)

l ". .
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(2-18) 2ca E(w (x,t)) dx 2 a (t) - af (1 , w(y,t)dy) 2d

+0 Iq) t w2 (0,T)dT

2-y o x

or

(2.19) -2aj" E(w(x,t))dx > - 2aE(O) + a It (Sxt(y't)dy)2dx

I2) fo 2(o,T)dT

and, therefore, (2.17) yields the lower bound

(2.20) 3"(t) > - y J(t) + (2 +a--) 1 ( X wtyY,)'dy ) cx
o2o S0 (Xt 2 (°y y)dx

- 2o'(O)Wx(O,t) J' 1 (Ix w(y,t)dy)dx

- 2a E (o) + 2P

> - -y (t) + (2 +a - Y) 1f1 (Sx wt(y,t)dy) dx + P

p'0 pt W2 (O,T)dT
2-y Jo x

- 2a'(0)W (ot) l (IX w(y,t)dy)dx

a [P + 2 E(0)]

where we have dropped a term If > 0 on the right-hand side of the last

estimate.

Now,

2 a'(O)wx(O,t) 11 (:x w(y,t)dy)dx' x  0 0 p

<2 a12(0) w 2 (Ot) + fS (rx w(y't)dy)2dx

<22 (0) w2 (Ot) + I (j(t) - (t + t ) 2

<
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so that

- 2a'(0) wx(O't) Jt (Jx w(y,t)dy)dx >

- 2a'2 (0)w2 (0,t) - 1 5(t)

Using this result in (2.202) we obtain

(2.21) 3"(t) > - (v + 1) 3(t) + (2 + a - y)[o1 (JXwt(yt)dy)2 dx + p]

-a'2 (0) [2VW2 (O~t) + -a- jIt 2-,rd~- '2Q (22(,oWa '2 0,1)dT]

- a[3 + 2 E(0)]

However, as w(x,t) is assumed to be a regular solution of (E), (2.1), (2.2)

we have

(2.22) J"(t) > - (y + ) (t) + (2 +a - y) [ jl ('wt(Y,t)dy) 2dx + P]

a 12 (o)[21IW2'O, -) + £11w2(0, -)II ]
X'L 2y x L

- a [P + 2E(O)]

Setting,

a x. ~ 2-y x 'Ll
we have, as our final estimate here

(2.23) J"(t) > - (y + l) (t) + (2 + a - -y) ( wt(y,t)dy) 2dx + P ]

'2
[+ x G'2(0) + 2E(O)]

and this completes the reduction of (2.15).

We now turn to (2.13) and work on this lower bound in an analogous

fashion, i.e., integrating the third term on the right-hand side of (2.13)

o4 by parts we obtain

(2.24) ,'(t) > - y 3'(t) + 2 J0 (so wt(y,t)dy)2 dx

- 2 fI w(x,t)a(w(x,t))dx
ao

- 2o' (O)w (Ot) So' (IX w(y,t)dy)dx + 2P
, x 0

1KL'
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We again add and substract 2 afo L(w(x,t))dx (on the right-hand side of

(2.24), employ our growth hypothesis relative to r(C), Cc , and use

the first (energy) lemma so as to obtain the lower bound

(2.25) Y'(t) >-y 3' (t) + (2 + ax) [J1 (jx wt(y,t)dy)2dx + PI

- [+ 2E(0)]
_ o'2(o) ;t

- 2 '(O)wx(O,t) 1 (jx w(y,t)dy)dx

where we have added and substracted the term aP > 0 . Estimating the last

expression on the right-hand side of (2.25), as per the discussion preceding

(2.2),we obtain, in place of (2.23),

(2.26) j"(t) >-y '(t) - 53(t)

(2 +a) [f 1 (jx wyt)dx + ~J

- K.+= 2(0) + 2E(o)3

We may, therefore, state

Lemma 2. If w(x,t) is a regular solution of (E), (2.1), (2.2) and a(C)

Ce R , satisfies (2.3) then J(t) , as given by (2.10), with B > 0 , t > 0

arbitrary, has a second derivative ,"(t) which possesses the lower bounds

given by (2.23) and (2.26).

We also have, directly form (2.25)

Lemma 3: If w(x,t) is a regular solution of (E), (2.1), (2.2) and a(C)

C e RI , satisfies (2.3) then 5(t), as given by (2.10), with P > 0 , to > 0

satisfies
S

(4

,I
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(2.27) 3"(t) >-Y J' (t) + (2 + a) [11 (Jx wt(y,t)dy)2 dx + f]

- a [P + 2E(O)]

whenever a' (0) = 0

Now, suppose that we replace the boundary conditions (2.2) by

(2.2') wx(O.t) = 0 , w(l,t) = 0 , t > 0

In the proof of the energy lemma (lemma 1) we would then obtain, in place

of (2.65),

(2.6') k(t) = - o'(w(O,t))w x(O,t) SO1 ( X wt(y,t)dy)dx

-. jo1 (fx wt(y,t)dy)2dx

= - y J'o (f10 wt(yt)dy) 2 dx <0

provided we modify the definition of a regular solution to be such that

c'(w(0,t)) < + w , t > 0 . By (2.6'), E(t) < E(O) , 0< t < . Also,

whenever the expression o'(w(O,t)) appears, it always appears in conjunction

with the boundary term wx(o,t) as a'(w(O,t))wX(0,t) - 0 by (2.2') and

the assumption that o'(w(O,t)) is finite for 0 < t < . Repeating the

analysis that led to the estimate (2.25), and defining a regular solution of

(E), (2.1), (2.2') to be a solution w e e((O,1) x [0,-]) such that for

(2.28) a'(w(o,t)) = lim + C'(w(y,t)) < +

we may state

Lemma 4. If w(x,t) is a regular solution of (E), (2.1), (2.2') and o('),

VC eRI , satisfies (2.3), then 5(t) , as given by (2.10), with > 0

t > 0 satisfies (2.27).
!0-
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Remarks. The lower bounds represented by (2.23), (2.26) will lead to growth

estimates for smooth solutions w(x,t) of (E), (2.1), (2.2) which are

valLd on the maximal interval of existence [0, tma) , tmax < + - ; the

lower bound represented by (2.27) will, on the other hand, yield the asser-

tion that,with appropriate assumptions concerning the initial data, regular

solutions of (E), (2.1), (2.2) can not exist whenever c'(0) = 0 and that

globally defined regular solutions of (E), (2.1), (2.2') can not exist (with

"regular" interpreted in the appropriate sense for each of the respective

initial-boundary value problems). We have been unable to prove that a lower

bound like (2.27) is valid for regular solutions of (E), (2.1), (2.2) when

G'(0) 0 although we conjecture that such a lower bound applies in this

situation also.

I
I

S
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3. Growth Estimates and Global Nonexistence Theorems

In this section we will indicate how the lower bounds on 3"(t) derived

in the last section lead to global nonexistence theorems and growth estimates

for the appropriately defined regular solutions of (E), (2.1), (2.2) and

(E), (2,1), (2.2'). Our results then carry over to solutions of the corres-

ponding initial-boundary value problems associated with the system (S): we

will also comment on the implications of our global nonexistence theorems

for initial-history boundary value problems that can be associated with the

nonlinear viscoelastic model defined by (1.13) when either o' (0) = 0 or

a'() < 0 for il sufficiently large.

We begin with the case in which w(x,t) is assumed to be a regular

solution of (E), (2.1), (2.2) with o(C) satisfying a'(0) = 0 and (2.3),

cc R ; in this situation (2.27) has been shown to be applicable where

J(t) is defined by (2.10), P > 0 , to > 0 are arbitrary and

E(O) r (fx WfY)dy)2dx + w o( )

By (2.11)

.gl(t) < 4 (01 (S"= w(y,t)dy)(fx wt(yt)dy)dx + (t +t-- a~~~ ~~~o tYtd~x + G ( o]

f1 (jx w(y,t)dy)2dx S1 ('x wt(yt)dy)2dx

+ 8 B (t + to) 2

Therefore, by the Schwartz inequality

1'2

aa" - ;,2>-_ 33~' -a3;( + 2E())

+. (f'X w(y,t)dy) dx + P(t 1 to) ]

"qx[j o  (w(Y,t)dy) derax W 15])dy2d+ ~ 2 0

+ 02 (t + t )2)Lb _ _ _

Ab J
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> - y 3 3' - a3( + 2E(0))
a-6

We now set = - and restrict our attention to those nonlinearities

a(C) , C eR , for which (2.3) holds with a > 6 . (In those cases where

we may take B = 0 in the analysis, repititon of the above argument

shows that
,, . + '2,

(oao2)o - " Y 0 3o - 2aE(o) 30

applies with 3(t) = 1 (JX w(y,t)dy)2dx ; in this case we set -

and require that o(C) , C , satisfy (2.3) with a > 2). In either case

we have, therefore

(3.1) 33" (P+l) '2 > y 33' - a(P + 2E(O))

with p > 0 We now define the quantities

rl (fx § (y)dy)2d

, = (jx (y)dy)(fo X(y)dy)dx

and consider, first, the case in which the initial data satisfy

(3.2) 0( ''l

E(o) < 0

a-2
In this case we may take 0 = 0 in (3.1), P -" , and assume that a(c)

satisfies (2.3) for some a > 2 . Then (3.1) reduces to

(33) 3 3" - (+I) 3 '2> - a 3 3' 3 0 < t <
00 0 0

So (o w(y,t)dy)2dx with w(x,t) a regular solution of (E), (2.1),
.70( t )  Sl (O '

(2.2). However, (3.3) is equivalent to the differential inequality

(3.4) ( eYt(30 (t))']' < 0 , 0 < t <

Direct integration of (3.4) then yields the estimate

'1

@-
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(35) al'(t) > e(0 _1 1- -t)  ( ]-1

However, the expression in the brackets on the right-hand side of this esti-

mate will vanish at

t = t. n = - ([21 ) (j ) ].1/Y > 0

0 1

provided that ; (Wo' i1) > (y/21i) .9(wo)" It thus follows that regular

solutions of (E), (2.1), (2.2) can not exist, i.e. there can not exist a

solution w(x,t) of (E), (2.1), (2.2) which is such that

w C e([0,1] X [0,-]) , lir ( b ) < +
y -0 b2< 1

with w2(0;) e L. [o,-) n LI[o,G)

31
Example Take- o(c) = a3C ; then a'(0) = 0 and a(C) , reR , satisfies

(2.3) with a > h if a3 > 0 . If 03 < 0 then (2.3) is satisfied only

for 0 < a < 4 : the global nonexistence result above, however, only applies

to those nonlinearities a(C) for which (2.3) is satisfied, VCCRl , for

some a > 2 . Thus, with a(c) = a3C3 'a 3 < 0 ,the nonexistence theorem

(to be stated below) applies with (2.3) satisfied, YCeRl , for any ax (2,41.

Note, moreover, that the hypothesis E(O) < 0 requires, in this case, that
0o(x)  i (o (Yd)2
r3 o o  0 3 dp dx < - I2 " S ;Wo(y)dy)2dx

i.e., that
with 2fo ('(y)dy)2d

(3.6) 3 < 0 wth 1031 >

J w 0 (x)dx

which implies that a(c) = a3C3 is an admissible nonlinearity, relative to

' the above nonexistence result only for o3  negative and sufficiently large

3

IAteaoennxsec eutol o eaieadsfiinl ag
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in magnitude or for 03 negative and w(x,O) sufficiently large in the

sense implied by (3.6). In addition, the initial datum must satisfy

a-2 o33
where p 2 . With p() = , 03 < 0 , a e(2,41 so that

1

Umax = 1 :it is sufficient that (3.7) be satisfied with p = pma. We

summarize our results for general case in the following.

Theorem I. Consider the initial-boundary value problem (E), (2.1), (2.2).

If the initial-data w, wI  satisfy both (3.7), where p , and

(3.8) ' (x)(p) dx < - (x
,g101O(~dd - 2 4.o - 1yd)d

and the. nonlinearity o(C) satisfies a'(0) = 0 and the growth restriction

(2.3), for all CeR 1  , and some a > 2 , there can not exist a regular

solution of the initial-boundary value problem, i.e., there can not exist

a solution w(xt)eC×([0,i] x [0,-)) such that w(0,')ei0,-)f L [0,-)

Now, suppose that E(O) < 0 but (W , W1) < 0 In this case we

may first choose = such that P + 2E(O) = 0 Then (3.1), with

a-6
= - this time, reduces to

(3.9 aa ( 1)'2(39) j.. +1-, >- 'Y3,7' , 0 < t <m

provided o(C) satisfies a' (0) = 0 and (2.3) for some a > 6 . Inequality

(3.9) for ;(t) is formally the same as (3.3) for Jo(t) and thus the

estimate (3.5) applies to 3 (t)p In this case, (3.5), as applied to 5(t),

shows that 3(t)p is bounded from below by a function which blows up as

At -"t where

°'1

S , . .. . . . . . . . . . .. , ,
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L2P to0- 2 ow ,Wl)j1

provided t > ';W also satisfies
09

j (W ) + oto
0 0 0 <

2Pot - 21;(Wo i)I

A simple calculation shows that we should choose

(3.10) t < ) [
+ 2() 1 /2

which, in turn, requires that

IP( o Zl)l I L Ig(i )1
(3.ll) > 0+ + 02 ) /2

0 0 0

Our results may be summarized as

Theorem II. Consider the initial-boundary value problem (E), (2.1), (2.2).

If the initial data satisfy
(x)1 ( )d d -

(3.12) 0 0 x 1 s -d7 (< o wl(y)dy)2 dx
a-6

as well as (3.11) with 1 = 8--
.' x 1 1 (x)

(313) o = -oS (So 1(y)dy)2d +5 1f O(o)d~ dl >0

where(3.14) 11 (jx i0yd)j_(~yd (

and the nonlinearity a(C) satisfies, V~eRl , (2-3) for some a > 6 and

a'(0) = 0 , there can not exist a regular solution of the initial-boundary

value problem.

2k+1
Example Consider the problem (E) , (2.1) , (2.2) with a(C) = Okc

k > 0 not necessarily an integer, ok < 0 ,and Zl(y) 0 0 <y< ;

Ik
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Clearly a'(0) = 0 and (3.12), (3.14) are both satisfied. For 0 we take

(3.15) P = la oi) 1 (W(X))2(k+l) dx

and require of ; (x) that
(3.16)2 +1k S (Z 2(k+l)

so that (3.11) is satisfied. The last condition, i.e., that (2.3) be satisfied,

CeRl ,for some a > 6 , reduces to the condition 6 < a = 2(k+l); in

other words, (2.3) is satisfied, VCeR , with u = 6 + E E > 0 if

Ek > 2 + - For the problem (E), (2.1), (2.2) with c(C) = ak < 0- 2 '

k > 2 + 7s, (y) = 0 . .. < y < 1 , and O(Y) 0< y < l satisfying (3.6),

where @ = E/8 > 0 , a regular solution can not exist.

Now, suppose that w(x,t) is a regular solution of (E), (2.1), (2.2')

with a(C) , CeR , satisfying (2.3) for some a > 0 . By lemma 4, u(t)

as given by (2.10), again satisfies (2.27) and thus the estimate (3.1) holds

a2
on [0,-) , with - (so that a > 2 is required) in those cases wherewne[,ayse t h =0 --ndit-

a-6 (so that a>6 is required) inwe may set P = 0 ,and with p =  r-- ta a>6 sreur-)i

those cases where we apply the differential inequality with P $ 0 . In

particular, if conditions (3.2) hold, we may take P = 0 , a(t) reduces to

Jo(t )  , and 50 (t) satisfies (3.3) on [o,o) - Integration again produces

(3.5) and thus the fact that tmax < tM < - provided Awwo ,l) > (y/2t)J(Wo)

We thus have the following corollary to Theorem I:

Corollary I. Consider the initial-boundary value problem (E), (2.1), (2.2').

If the initial data WoW satisfy both (3.7) with > = >0 ,and

(3.8) and c(C) satisfies (2.3) ,VCeR ,and some a > 2 ,there can not

IA
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exist a regular solution of the initial-boundary value probelm, i.e., there

can not exist a solution w(x,t) E C2 ([0,1] x [0,-)) such that

a'(w(Ot)) < , t > 0

Remarks. We need not require in Corallary I that a'(0) = 0 . However,

our results certainly do not contralict the earlier work of Nishida [6]

et.al., on initial-value problems (on RI) associated with the system S

For example, if a(C) = a, C + 3 C3 with (I > 0 3 > 0 then (2.3) is

satisfied, YreRl , with a > 4 Also a' (C) a + 3G3C
2 > 0

VCR 1 so that S is a hyperbolic system; in this case the work of Nishida

[6] , et.al., implies the existence of a unique global smooth solution pro-

vided WraC
op lwo,xwl,x are sufficiently small in magnitude. For a(C) =

3o1C + a3C , 0I > 0 , G3 > 0 , however, (3.8) is never satisfied for any

choice of the initial data, no matter how small the data are chosen and thus

the nonexistence result of Corollary I does not apply.

The case where a(c) = alC + a3C3 with a1 > 0 , a3 < 0 is more

delicate. In this case, (2.3) is satisfied YCR 1  if 2 < a < 4 . Also

o'(0) > 0 , a'(C) 3li 3Io3 1C
2 >0 provided I0 < (GI/31a31))/2. Recall

that in establishing the global existence and uniqueness result in [6] it is

only required that o'(0) > 0 ; this is because of the crucial observation

that if the initial data are chosen sufficiently small, the solution must

remain small (for as long as it exists) and thus, it is indeed possible to

choose the data so small initially that on the maximal interval of existence

of the solution w(x,t) , lw(x,t)l < (01/31031) /2 In this case, the
3h

I
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fact that hyperbolicity of S breaks down for values of C such that

IdC > (0l/31031)1/2 has no effect on the fact that globally defined unique

smooth solutions exist. With o(c) = Cl. + 03C3 , aI > 0 , a3 < 0 , how-

ever, the condition (3.8) becomes

- 2
(a a 1-4

-,- iOCl .13 w )d .r 2

(3.17) 'l ( .I W _ Wo)d _ r2 02o w1 (y)dy) dx

In order to see what this condition implies, vis a vis, the existence theorem

of Nishida [6], et.al., consider the simple case in which 1 (y) A 0

O < y < 1 . and (3.7) is satisfied. Then (3.17) certainly implies the

statement that
w

1 ( wo (X) 1 0 .(X))dx < 0 ; assuming that o(.) is at least con-
.o -231 4 0

tinuous on [0,1] this will be satisfied if ( h )

(3.18) I_ (x)j > (T)1/2 + 6 , 6 > 0
3

But if (3.18) is satisfied with b sufficiently large, i.e., if (3.8) is satisfied

3with a(C) C + a3C > 0 3 < 0 , it no longer follows from the

results in [6] that iw(x,t)l remains below the bound (namely, (/31a 31)I/2)

which would insure that o'(w(x,t)) > 0 , 0 < x < 1 , t E[O,tmax). If

(3.18) is satisfied then, in general, c'(0) > 0 no longer guarantees that

0'(w) > 0 for as long as smooth solutions exist. Hyperbolicity breaks

down and, as noted in Slemrod [9], [10], the global nonexistence and break-

down results proven there for data WoW 1  sufficiently small in magnitude,

with w , w large, no longer apply. To summarize: if: o,x ' l,x

OW ) = a 1C+ a3 , 1 > 0 , o3 < 0 and the data are chosen so that (3.7),

(3.8) are satisfied then regular solutions of (E), (2.1), (2.2') can not

exist; this result compliments the results of Slemrod [91, [101 concerning

(4) For I 0(x)t sufficiently large, therefore, 0 <x < 1 , (3.17) will be
satisfied for any data function wl(. ; certainly, 1 (X) , 0 < x < 1 will

have to be at least as large as the lower bound (3.18).
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global nonexistence of smooth solutions for viscoelastic problems associated

with fluids of grade three (it applies to the situation in which the system

loses its hyperbolic character during the course of the flow) and does not

contraiiet the global existence results implied by the work of Nishida [6],

et. al.

Concerning the initial-boundary value problem (E), (2.1), (2.2') we

also have the following direct corollary of Theorem II:

Corollary II. For the initial-boundary value problem (E), (2.1), (2.2')

suppose that the initial data w ,w1 satisfy (3.12), (3.1h) and (3.11),

with o =r-6 > 0 and P given by (3.13), and the nonlinearity o(t)

satisfies, Vt cR1 , (2.3) for some ct > 6 ; then a regular solution of (E),

(2.1), (2.2') can not exist.

Remarks. The global nonexistence results contained in the statements of the

two theorems above, and the associated Corollaries, carry over in an obvious

way to equivalent initial-boundary value problems for (S) of the form

rw v =0

vt - + = 0 (0 < x 1 t >0)

(3.19)
w(x,0) = () , v(x,0) (x) ,0 < x < 1

0 
0

v(Ot) : 0 , v x(l,t) = 0 , t > 0

In fact we have already seen that if w(x,t) is a solution of (E) and we

define v(x,t) in terms of w(x,t) by (1.21) , then the pair (v,w) is a

solution of the system (S) • If we have initial conditions w(x,O) ( %(x)
0
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wt(x,O) = l(x) associated with (E) then the corresponding initial conditions

associated with the equivalent system (S) are o(x) and Vo(x) = jxV(y)dy

In the application involving Theorem I , the boundary conditions associated

with (E) have the form w(O,t) w(l,t) 0 and regularity involves the

assumption that w 2  (0, eLw(o,)n L[ 0, ) In view of (1.21), the assoc-

iated equivalent boundary conditions on v(x,t) are v(0,t) = 0 and

vx(l,t) = 0 as a'(0) = 0 in this case. In the application involving

Corollary I we do not require that a'(0) = 0 but we have w x(O,t) = 0

and w(l,t) = 0 ; regularity involves the assumption that j'(w(O,t)) < ,

Vt > 0 . In this case the associated equivalent boundary conditions on

v(x,t) are again v(0,t) = vx(l,t) = 0 . We leave to the reaaQr the simple

task of carrying over the conclusions of the above global nonexistence results

for initial-boundary value problems associated with (E) to equivalent initial-

boundary value problems of the form (3.19) which are associated with the

system (S)

We now want to turn our attention to the derivation of growth estimates

for solutions of initial-boundary value problems associated with (E); these

estimates are valid on the maximal time interval [0, tmax) of a sufficiently

smooth solution. While it is possible to derive a variety of such growth

estimates from the estimates (2.23), (2.26) which were derived for regular

solutions of (E), (2.1), (2.2), and corresponding estimates which can be

derived for regular solutions of (E), '2.1), (2.2'), we will confine our

attention here to the initial-boundary value problem (E), (2.1), (2.2) and

the lower bound on " that is given by (P.,3). As we may have t T <cP

;max

,-0
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the corresponding growth estimate will apply to solutions w(x,t) of (E),

(2.1), (2.2) which satisfy w(x,t)e 2 ([O,I]x[O,T)) and

w(O,.) eLLO,T) n LI[o,T)

If we combine (2.23) with the estimate

<8 J'1 (Sw(y,t)dy) dx: J1 So" wt(y,t)ay)d

+ 8 p(t + t0 )
2

use the definition of 0(t) , and then employ the Cauchy-Schwartz inequality,

we readily obtain the differential inequality

(3.20) X3" - . '2 > - (Y+l)3

-a 3(ITp'"2 (0) + 2E(O))

for 0 < t < tnax =T ,where

(3.21) K x(O, -) 11o, L jjwo, 0
(T = X "0)??L (OT) + 2-ywx0 Ll(0T)

If tmax = m , and we are dealing with a regular solution of (E), (2.1),

(2.2), then KT in (3.20) must be replaced by K. and (3.20) holds for

0 < t < We first consider those cases in which

(3.22) KTq 2(0) + 2E(O) < 0

'2(Ko (0) + 2E(O) < 0 , if tm x = w ) If a'(0) = 0 then (3.22) re-

duces to the requirement that E(O) be nonpositive; otherwise we require

that the initial energy satisfy E(0) < - I (0) If (3.22) holds

then we may take P = 0 in (3.20) and reduce the differential inequality to

(3.23) - - 2>- (Y+i) 0 < t < tmax
000 -- 0

We now set . = (a-y-2)/4 and require that (2.3) hold, VeR1 , for some

.- 1
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a > y + 2 ; then i > 0 and (3.23) becomes

'2
(3.24) 3 '- ( +1)3° >- (y+1)3? , 0 < t <tmax

We note that differential inequalities of the form (3.24) have appeared

previously in the literature (e.g. [16), §11) . Following the analysis in

[16 1 we set S(t) = 3 o-(t) and note that S' (0) = - ( P+l )

if 3'(O) > 0 , i.e., if Y(i) > 0 ; nder these circumstances, we have

.S(t) < 0 on some interval [0,T) By (3.24) then .'(t) < L(y+l)S(t) and

thus, for t e(0,1] we may multiply on both sides by Y& (t) and integrate

so as to obtain

(3.25) S, (t)2 - S' (0)2 > P(Y+)( (t)
2 - 2(o) )

Clearly the estimate (3.25) may br rewritten in the form

(3.26) (.Y(t) +A-- ) ) P Wt))( '(t) -r S(t))

>(S, (0) + /P(-Yl So1) (S, (0) - '_-7+_-1 ) ) :-

If &(O) < 4(/T .80) , then by the assumed smoothness of w(x,t)

for 0 t < tmax , it follows that neither factor on the left-hand side of

(3.26) can change sign on (0, tmax]. Therefore, for 0 < t < tmax

.'(t) < - / p/ l T .(t) , which implies that $(t) exp (/77P)t) < J0)

or

So(t)_ >o(O) exp t) ,0 < t < tmax

Now, the condition that S'(0) < -*+l) .80) is equivalent to the requirement

that

(o ) > w .
(' 2o

cxy-

'4
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where a > +2 We may, therefore, state the following

Theorem III. Let w(x,t) e C2 ([O,1] x [0,T)) be any solution of (E), (2.1),

(2.2), T < - , for which xT < - and assume that the nonlinearity a(C)

satisfies (2.3) , VCeR , for some a > y-2 . Then, if the initial data

% , w1  satisfy

(i) E(O) < 1 KT 01(0)2

(ii) (W iwl) > ( a-y )/2

it follows that

(3.27) (rx w(y t)dy)2 dx > .9(Wo) exp (2 _/ t) ,0 < t < T

Remarks. If condition (ii) of the theorem is not satisfied, i.e., if

;5o(0) _< 1 -- 5o(0) with -- (a- -2)/4 and

TP 2(0) + 2E(o) < 0

then we would work instead with the differential inequality (3.20). We

would first choose 6 p such that P + KT (0) + 2E(O) =0 and then
00 T

choose to so large that

01 + oto > 2o )

ct-v-6
where, in view of (3.20) we now have @ = and a(C) is required to

satisfy (2.3), VCeR1 , and some a > y+6 ; an increasing exponential lower

bound for J(w(x,t)) of the form (3.27) again follows. If a'(0) = 0 the

condition (ii) of the Theorem reduces to the requirement that (3.12) be

satisfied. Finally, a series of simple estimates, employing only the

I

U... iC. .. i....~~lI. .. iIIil.....



Schwartz inequality, readily establishes that (3.27) implies an exponentially

increasing lower bound for jlw(.,t)1122 (Ol) on [0, tmax]

Many of the results of this section may be applied to initial-boundary

value problems associated with the model of nonlinear fluid viscoelastic

response considered in [91, [10]. While our results to not apply directly

to the problem of shearing perturbations from a steady rectilinear flow with

associated no-slip boundary conditions, they do apply to the following sit-

uation: the evolution equation in the Slemrod model in [91, [101 is given by

(1.13), i.e.,

(1.13) P^rt(X,t) :a (Joe'YsV(x,t-s)ds)x

and there is a prescribed, associated smooth velocity history given by

(1.15c), i.e.,

(l.15c) V(x,r) = 7o(X,T) , - < 0 _ o

Suppose we associate with (1.13) the homogeneous boundary conditions

(3.28) r-(o,t) = 0 , vx(l,t) = 0 , t > 0

and, following the analysis in [9], [10 define

(3-29a) v(x, t) = S e_ t(x,t_6)ds , 0 < x < 1 , t > 0

(3.29b) w(x,t) =re- (xt-s)ds , 0 < x < 1 , t > 0
0 x

It then follows that (v,w) satisfy (S) and, thus, w(x,t) , as given by

(3.29b) , satisfies (E) . Also, in view of (3.28), we have w(O,t) = w(l,t)-O

and by (i.15c), (3.29b) we have

.



2

(3.30) w (x) S _e 5' b V(x,s)ds, Zjx) So eSys  I (xs)ds

By Theorem I , therefore if the nonlinearity o(C) in (1.13) satisfies

a'(0) = 0 and the growth restriction (2 .3 ),V eR1 ,and some Q > 2 , and

the initial velocity history 7 (x,) , - < < 0 , satisfies the conditions

implied by (3.7), (3.8), where Wo , W-l are given by (3.30), it follows

that there can not exist a solution V(x,t) of the initial-history boundary

value problem (1.13), (l.15c), (3.28) which is such that w(x,t) , as de-

fined by (3.29b) is regular, i.e., satisfies w(x,t)eC 2([0,1] x [,))

and w 2 (O,.)L (O,w)nLl[o,w). However, by the simple relations
x

= a(w)x

= v + yw

x x

which are a direct consequence of (3.29a,b) it then follows that there can

not exist a solution lf x,t) of the initial-history boundary value problem

(1.13), (1.15c), (3.28) which satisfies r(x,t) e 2 ([O,1] x [O,w)) with

1 (0,.) eLW[O,w) In one sense this result extends the work of Slemrodxx

[9], [10] to the situation where a(C) satisfies o'(O) = 0 , a situation

that can not possibly be handeled by the Riemann invariant argument approach

in [9], [10]. On the other hand the result is weaker than the type of results

contained in [9], [101 in as much as the Riemann invariant argument employed

*!' there (for a' (0) > 0) yields global nonexistence of a solution in

S(0,1] x [0,-)) and shows that such global nonexistence occurs as a re-

sults of finite - time blow up of the space-time gradient (V V t) ofx t

solutions. We leave for the reader the simple task of carrying over the

other global nonexistence results and growth estimates obtained in this

Ir

II i-. . , . . .. ...... .
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section, for initial-boundary value problems associated with (E), to the

corresponding initial-history boundary value problems governing nonlinear

viscoelastic response; the results of Corollary II, in particular, may be

carried over with (3.28) replaced by the homogeneous boundary data

Vxx (O,t) = X(1, t) = 0 , t > 0

A

'.re'
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NOTE: This work was preformed while the author was visiting the School of

Mathematics at the University of Minnesota.
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